
Seer: Reinforcement Learning in
Rocket League

Master Thesis

Neville Walo

Wednesday 24th August, 2022

Supervisor: Prof. Dr. Fernando Perez Cruz
Advisor: Dr. Nathanaël Perraudin

Swiss Data Science Center (SDSC)
Department of Computer Science, ETH Zürich

Abstract

Reinforcement learning studies how intelligent agents should act in an
environment to maximize the notion of cumulative reward. Reinforce-
ment learning has been used to achieve superhuman performance in
many board games such as chess and Go. Only recently has reinforce-
ment learning made its way into the world of e-sport, and has already
achieved great success by defeating the world champions in Dota 2 and
mastering StarCraft 2. In this thesis, we investigate how reinforcement
learning can be used to create an intelligent agent that plays Rocket
League. We created Seer, a Rocket League agent that plays 1v1 and
is better than about 50 percent of the Rocket League player base. Ad-
ditionally, we show that it is possible to learn from human replays to
accelerate training. This work may be a step on the road to creating a
superhuman agent in Rocket League.

i

Acknowledgements

Uppermost, I would like to thank my advisor, Dr. Nathanaël Perraudin,
for the support throughout the last months and for providing guidance
and feedback during this project. Furthermore, I want to thank Prof.
Dr. Fernando Perez Cruz for supervising my thesis. I would also like
to thank the entire Rocket League bot community, without whom this
thesis would not have been possible.

ii

Contents

Contents iii

1 Introduction 1
1.1 Related Work . 2

2 Background 3
2.1 Reinforcement Learning . 3

2.1.1 Markov Decision Process (MDP) 3
2.1.2 Policy Gradient . 4
2.1.3 Advantage Actor-Critic 5
2.1.4 Importance Sampling 6
2.1.5 Generalized Advantage Estimation (GAE) 6
2.1.6 Entropy Regularization 7
2.1.7 Proximal Policy Optimization (PPO) 7

2.2 Rocket League . 9
2.2.1 Ranking System . 10
2.2.2 Cars and Hitboxes . 10
2.2.3 Frameworks . 11

3 Methods 12
3.1 Optimizing the Policy . 13

3.1.1 Episode and Rollout . 13
3.1.2 Hyperparameters . 14

3.2 Observation Space . 16
3.3 Action Space . 17
3.4 Neural Network Architecture 18
3.5 Masking . 19
3.6 Reward Weights . 20

3.6.1 Details . 22
3.7 Reaction Time . 25

iii

Contents

3.8 Long Term Credit Assignment 25
3.9 Self-Play . 26
3.10 Exploration . 27

3.10.1 Details . 28
3.11 Hitbox . 28
3.12 Learning a Prior from Human Data 29

3.12.1 Dataset . 29

4 Evaluation 31
4.1 TrueSkill . 31
4.2 Random Prior vs. Human Prior 32
4.3 Evaluating Seer . 33

5 Conclusion 35
5.1 Future Work . 35

A Appendix 36
A.1 Game Tick Packet . 36
A.2 Reference League . 38
A.3 Software Stack . 39

A.3.1 Forks . 39
A.3.2 Installed Packages . 39

A.4 Hyperparamters Change . 41
A.5 Rocket League 1v1 Rank Distribution 42

Bibliography 43

iv

Chapter 1

Introduction

Reinforcement learning has been used to achieve superhuman performance
in many board games such as Backgammon [41], Shogi [35], Chess [35], and
Go [34, 36]. Reinforcement learning has also made its way into the world
of video games and is trying to outperform humans here as well. Many
older Atari games could already be mastered [21]. In 2019, OpenAI Five
defeated the world champions in Dota 2 [6] and AlphaStar was able to mas-
ter StarCraft 2 [3]. Dota 2 and StarCraft 2 present immense challenges for
reinforcement learning due to long time horizons, partial observability, high
dimensionality of observation and action spaces and complex rules. Both
games were mastered by training giant networks over multiple months us-
ing large batch sizes, enormous computational effort and distributed train-
ing.

In this thesis, we use supervised methods and reinforcement learning to
create an agent that plays Rocket League. Rocket League differs from most
other games, as Rocket League is a physics based esports, thus creating
new challenges. The key to victory in Rocket League is not only choosing
the right strategy, but also understanding the physics behind the game and
acquiring the mechanical skills to maneuver the car in the arena. Many
actions per second are required to play the game, and just one miscalculated
action can make the difference between winning or losing.

To potentially use less computational resources to train Seer, we use data
from human replays. Inputs and outputs of human replays were extracted
to train the network in a supervised manner to give the model a prior. By
learning from human replays, we hoped to spend fewer resources training
an agent than if we relied solely on reinforcement learning. We show that
giving the model a prior can indeed speed up training in the early stages,
but shows diminishing returns in later stages.

Seer has learned to play Rocket League all by itself using self-play, without

1

1.1. Related Work

the need for scripted actions or other hard-coded events. Seer trained for
about a month and a half, during which Seer played Rocket League for
about 20 years. The final version of Seer is roughly in the Platinum I rank
(see Sec. 2.2) and thus in the top 50 percent of the Rocket League player
base in 1v1.

Chapter 2 provides the reader with the theoretical background for this thesis.
In Chapter 3, we describe the methods used and how Seer was trained. In
Chapter 4, we present our evaluation methods and evaluate Seer. Chapter 5
provides a conclusion of this thesis.

1.1 Related Work

Lately, much research has been conducted on the application of reinforce-
ment learning to master e-sport video games. Most notably are the successes
of OpenAI Five in Dota 2 [6] and AlphaStar in StarCraft 2 [3]. Reinforce-
ment Learning has also been used to master other games, such as Atari [21],
Backgammon [41], Shogi [35], Chess [35], and Go [34, 36].

Simultaneously with this work, a lot of effort was made by the Rocket
League community to create a superhuman agent. Most agents are still train-
ing and not yet published, but the current versions can usually be found in
the RLBotPack1. Most notable are the agents Necto and its successor Nexto2,
which are currently the best Rocket League bots. Both Necto and Nexto use
a transformer-like architecture to handle a variable number of players on
the field. Attempts have also been made to create a Rocket League clone in
Unity to speed up training and perform a sim-to-sim transfer [24].

1https://github.com/RLBot/RLBotPack
2https://github.com/Rolv-Arild/Necto

2

https://github.com/RLBot/RLBotPack
https://github.com/Rolv-Arild/Necto

Chapter 2

Background

This chapter provides the background knowledge about reinforcement learn-
ing and Rocket League for this thesis.

2.1 Reinforcement Learning

Reinforcement learning is one of the three fundamental paradigms of ma-
chine learning, along with supervised learning and unsupervised learning.
Reinforcement learning studies how intelligent agents should act in an envi-
ronment to maximize the notion of cumulative reward.

Although the literature on reinforcement learning is vast and many algo-
rithms exist, we will mainly focus on the derivation of the Proximal Policy
Optimization (PPO), the algorithm used in this work. We first introduce
Markov Decision Processes (MDPs) (Sec. 2.1.1), the origin of reinforcement
learning. Then, we introduce policy gradient methods (Sec. 2.1.2), Advan-
tage Actor-Critic (Sec. 2.1.3) methods, Importance Sampling (Sec. 2.1.4),
Generalized Advantage Estimation (GAE) (Sec. 2.1.5), Entropy Regulariza-
tion (Sec. 2.1.6) and finally arrive at the Proximal Policy Optimization (Sec.
2.1.7) algorithm.

2.1.1 Markov Decision Process (MDP)

A Markov Decision Process is a discrete-time stochastic control process. It
provides a mathematical framework for modeling decision-making in situa-
tions where outcomes are partially random. It is used in many disciplines,
including robotics, automatic control, economics, and machine learning.

We denote a Markov Decision Process as (S, A, P, p0, r, γ) where

• S is the discrete state space,

• A is the discrete action space,

3

2.1. Reinforcement Learning

• P : S× A× S→ [0, 1] is the state transition probability,

• p0 : S→ [0, 1] is the initial state distribution,

• r : S× A→ R is the reward function,

• γ ∈ [0, 1) is the discount factor.

The optimization objective is to find a stochastic policy π : S× A → [0, 1]
which optimizes the expected discounted cumulative reward

J(π) = E

[
∞

∑
t=0

γtrt

]
(2.1)

where rt is the reward received at the time step t in the trajectory (s0, a0, r0,
s1, ..., st, at, rt, ...) with s0 ∼ p0, st ∼ P(·|st−1, at−1), at ∼ π(·|st), rt = r(st, at).
Fully observed Markov Decision Processes can be solved in polynomial time
using for example value iteration, policy iteration or linear programming
[38].

Planning in partial or unknown MDPs is referred to as reinforcement learn-
ing (RL). There are two basic approaches for solving reinforcement learning
problems: Model-based RL and model-free RL. With model-based meth-
ods (e.g., R-Max [7]), one attempts to learn the underlying MDP and de-
termine the transition probabilities and reward function. Once the MDP
is sufficiently explored, the same methods as for fully observed MDPs can
be used. With model-free methods, one tries to learn the optimal policy
directly without knowing the underlying MDP. This can be achieved us-
ing for example policy gradient methods or learning the value function
Vπ(s) = E

[
∑∞

t=0 γtrt|s0 = s
]

(TD-learning [37]) or the Q-function Qπ(s, a) =
r(s, a) + γ ∑s′ P(s′|s, a) ∗Vπ(s′) (Q-learning [45]) directly to find the optimal
policy.

Reinforcement learning algorithms can be further divided into off-policy
and on-policy algorithms. In an on-policy algorithm, data gets collected
using the current version of the policy, which means that the agent has
implicit control over which data to collect. This means that the agent can
decide whether to gather more data to avoid missing out on a potentially
large reward (exploration) or stick with the current knowledge and build an
optimal policy for the data the agent has seen (exploitation). In an off-policy
algorithm, there is no control of how the data gets collected, which means
that the algorithm cannot trade off exploitation and exploration and also
that data might get collected using a different policy.

2.1.2 Policy Gradient

One of the challenges with traditional MDPs is scaling to large state and ac-
tion spaces. For example, if one is dealing with a continuous state or action

4

2.1. Reinforcement Learning

space, or with Partially Observable Markov Decision Processes (POMDP)
that have an exponentially growing state space, conventional methods are
impractical. One way to scale to a large state space is to learn a parame-
terized value function Vπ

θ (x) or a parameterized Q-function Qπ
θ (s, a) (DQN

[22], DDQN [42]), which can be optimized using gradient descent. To scale
to large action spaces, one can learn a parameterized policy πθ which can
be optimized by obtaining the policy gradient ∇θ J(πθ) of the expected dis-
counted cumulative reward with respect to the policy parameters θ. Al-
though is not possible to compute the policy gradient ∇θ J(πθ) directly, the
REINFORCE trick [46] allows estimating the policy gradient by Monte Carlo
sampling a trajectory τ of length T using the current policy (on-policy) and
then computing the REINFORCE update

∇θ J(πθ) = Eτ∼πθ
[Gτ∇θ log πθ(aτ|sτ)]

= Eτ∼πθ

[
T

∑
t=0

Gt∇θ log πθ(at|st)

]
(2.2)

where Gt = ∑∞
k=0 γkrt+k denotes the discounted reward after time step t.

2.1.3 Advantage Actor-Critic

The vanilla REINFROCE update (Eq. 2.2) suffers from high variance and
noisy gradients, and therefore poor sample efficiency. It is possible to reduce
the variance of the REINFORCE update by introducing a baseline b (e.g.
b = 1

T ∑T
t=0 Gt)

∇θ J(πθ) = Eτ∼πθ

[
T

∑
t=0

(Gt − b)∇θ log πθ(at|st)

]
. (2.3)

To further improve the sample efficiency, one can rewrite ∇θ J(πθ) according
to the policy gradient theorem [39]

∇θ J(πθ) = Eτ∼πθ

[
T

∑
t=0

Qπ(st, at)∇θ log πθ(at|st)

]
(2.4)

which leads to Q Actor-Critic methods. In Q Actor-Critic, it is again possible
to use a baseline b to improve the sample efficiency. Choosing the baseline as
the value function b = Vπ(s), gives rise to Advantage Actor-Critic methods
(A2C/A3C [20])

∇θ J(πθ) = Eτ∼πθ

[
T

∑
t=0

Aπ(st, at)∇θ log πθ(at|st)

]
(2.5)

where Aπ(st, at) = Qπ(st, at)−Vπ(st) = rt+1 + γ ∗Vπ(st+1)−Vπ(st) is the
advantage function.

5

2.1. Reinforcement Learning

As shown in equation 2.5, performing the policy gradient update using Ad-
vantage Actor-Critic requires two parameterized function, the value function
and the policy function. Based on Actor-Critic methods, many other ways
of performing gradient updates have been developed to further improve
sampling efficiency (e.g. TRPO [30], PPO [32], SAC [10]).

2.1.4 Importance Sampling

The update in general Advantage Actor-Critic methods (Eq. 2.5) requires the
data to be sampled on-policy. This means that new trajectories needs to be
sampled for every gradient step to perform correct gradient updates. This
also means that every collected sample can only be used once, which leads to
poor sample efficiency. Sample efficiency can be improved by introducing
importance sampling, which provides an unbiased estimate of the policy
gradient using off-policy samples of an older policy πθold :

∇θ J(πθ) = Eτ∼πθold

[
T

∑
t=0

πθ(at|st)

πθold(at|st)
Aπ(st, at)∇θ log πθ(at|st)

]
. (2.6)

The importance-sampled policy gradient can be interpreted as optimizing
the surrogate objective

LIS(θ) = Eτ∼πθold

[
T

∑
t=0

wt(θ)Aπ(st, at)

]
(2.7)

with wt(θ) =
πθ(at|st)

πθold
(at|st)

.

Using importance sampling, data efficiency can be improved by performing
multiple gradient updates using the same data. Theoretically, it is possible
to estimate the policy gradient using data collected from any policy with
sufficient support, but using trajectories that are too old (or simply too dif-
ferent) can again lead to high variance and poor sample efficiency.

2.1.5 Generalized Advantage Estimation (GAE)

Using the raw rewards collected during sampling provides an unbiased es-
timate of the expected return in a given state. However, because of the
stochasticity of the environment and the policy, each reward may be a ran-
dom variable, the sum of which can lead to a high variance in the estimate of
expected return. To balance variance and bias in the estimate of the expected
return, an n-step return can be defined

R(n)
t = γn ∗V(st+n) +

n−1

∑
i=0

γirt+i (2.8)

6

2.1. Reinforcement Learning

where the sum is truncated after n steps and the rest is approximated using
the value function. Choosing n = 1 results in a 1-step return R(1)

t = rt +
γV(st+1) (high bias but low variance) commonly used in Q-learning [22],
while using n = ∞ recovers the original return (unbiased but high variance).
Therefore, n acts as a trade-off between bias and variance.

Another way to trade off variance and bias in the estimate of the expected
return is to use a λ-return [40]

Rt(λ) = (1− λ)
∞

∑
i=1

λi−1R(i)
t (2.9)

which is an exponentially weighted average of the n-step returns with decay
parameter λ. Choosing λ = 0 gives R(1)

t , while choosing λ = 1.0 recovers the
original return. Therefore, λ acts as a trade-off between bias and variance.

Updating the value function using the temporal difference computed with
the λ-return results in the TD(λ) algorithm [40]. Similarly, estimating the
advantage with the λ-return, yields the Generalized Advantage Estimator
GAE(λ) [31].

2.1.6 Entropy Regularization

Using reinforcement learning, an agent may get stuck in a local optimum
prematurely. This could happen because the agent learns early on that a
particular action yields a relatively high reward, and from then on, only
performs that action, missing out on a potentially even greater reward and
thus missing the global optimum.

In policy gradient methods, to prevent the agent from getting stuck in a
local optimum and to trade-off exploration and exploitation, the policy loss
can be augmented using entropy regularization:

H(π(·|st)) = −∑
a

π(a|st) log(a|st). (2.10)

By adding H(π(·|st)) to the loss: Lnew = Lold + αH(π(·|st)), the agent will fa-
vor actions with higher entropy therefore favoring exploration. Exploration
and exploitation can be balanced by choosing the hyperparameter α accord-
ingly.

2.1.7 Proximal Policy Optimization (PPO)

Proximal Policy Optimization [32] is a state-of-the-art actor-critic reinforce-
ment learning algorithm. The key idea in PPO is that the next policy should

7

2.1. Reinforcement Learning

remain close to the previous policy. In addition, PPO uses generalized ad-
vantage estimation GAE(λ) to balance bias and variance, uses entropy reg-
ularization to balance exploration and exploitation and uses a replay-buffer
in combination with importance sampling to improve sample efficiency.

The PPO algorithm alternates between sampling data through interaction
with the environment and optimizing a surrogate objective function using
stochastic gradient ascent. During the roll-out phase, PPO collects fixed-
length trajectories and stores the trajectories in a replay buffer. Afterwards,
the replay buffer is used to perform multiple epochs of mini-batch updates
to minimize the surrogate loss.

As mentioned several times, policy gradient methods suffer from high vari-
ance and noisy gradients, which means that the gradient updates performed
are not always well-behaved. To counteract the problem of taking large gra-
dient steps in the wrong direction, one can introduce the concept of a trust
region. The trust region is intended to prevent the policy from changing
too much in just one gradient update, i.e., leaving the trust region. The
first algorithm to use the concept of a trust region is Trust Region Policy
Optimization (TRPO [30]) which includes an additional KL-divergence con-
straint to prevent the behavior of the current policy from deviating too far
from the previous policy,

Eτ [KL [πθold(·|st), πθ(·|st)]] < δ (2.11)

where δ is a hyper-parameter. TRPO has been successfully applied to solve
a wide variety of RL problems, however, ensuring that the constraint (Eq.
2.11) is satisfied can be difficult and computationally expensive. PPO also
uses the concept of a trust region, but PPO replaces the hard constrained
from TRPO with a surrogate loss. There exist two versions of PPO, one
which uses a clipped objective

LCLIP(θ) = Eτ∼πθold

[
T

∑
t=0

min
[
wt(θ)Aπ(st, at), wclip(θ)Aπ(st, at)

]]
(2.12)

where wclip(θ) = clip(wt(θ), 1− ε, 1+ ε) and ε is a hyper-parameter, and one
which uses an adaptive KL penalty

LKL(θ) = Eτ∼πθold

[
T

∑
t=0

wt(θ)Aπ(st, at)− βKL [πθold(·|st), πθ(·|st)]

]
(2.13)

where β is a hyper-parameter. We will focus on the version which uses
clipping, as it more widely used, and the one used in this thesis. To prevent
policies from diverging too far from each other, clip(wt(θ), 1− ε, 1 + ε) sets
the gradient to zero whenever the policy has diverged too much from the
previous policy. Thus, wclip(θ) has a similar function as the KL divergence

8

2.2. Rocket League

constraint in TRPO. Then, the minimum is taken between the clipped and
unclipped advantages to create a lower bound.

To summarize, the loss of PPO is given by

LPPO(θ) = LCLIP(θ)− c1LVF(θ) + c2H(πθ) (2.14)

where c1, c2 are hyperparameters, LCLIP(θ) is the loss of the policy function,
LVF(θ) is the squared-error loss of the value function and H(πθ) in an en-
tropy bonus.

2.2 Rocket League

Rocket League is a vehicular soccer video game developed and published
by Psyonix in 2015. It has up to eight players assigned to each of the two
teams, one team has the team color blue, the other team has the team color
orange. The players use rocket-powered cars to play soccer and score points
over the course of a match. The game is played in a symmetric arena with
a goal on each side, see Fig. 2.1a. Matches are five minutes long, with a
sudden death overtime if the game is tied at that point. After each goal, the
players are reset to a specific kick-off position.

The cars can drive, jump, dodge and fly to hit the ball while in the air. Each
car can store up to 100 boosts that can be used to move across the field more
quickly or to propel itself forward in flight. Players can alter their car’s
orientation while midair, which combined with midair boosting allows for
a controlled flight. To collect boosts, players can drive over 34 boost pads
that are spread across the field, see Fig. 2.1b. If one drives into an opponent
with enough speed, it is possible to demolish the opponent, who will then
be revived after 3 seconds on its side of the field.

(a) Example Arena: Wasteland. [44] (b) Boost pad locations in Rocket League.

Figure 2.1: Rocket League Arena and Boost Pads: Rocket League is played
in a symmetric arena with 34 boost pads spread across the field.

9

2.2. Rocket League

2.2.1 Ranking System

Rocket League has its own ranking system to determine players’ skills in
competitive online play. The skill level is determined by a single number
called MMR (Matchmaking Rank). Fig. 2.2 shows the associates emblem for
each rank. Each rank (except Supersonic Legend) is divided into 3 sub-ranks
(e.g. Bronze I, Bronze II and Bronze III) and each sub-rank is then further
subdivided into 4 divisions (e.g. Bronze I Division 1, Bronze I Division 2,
Bronze I Division 3, Bronze I Division 4). Fig. A.2 shows the approximate
rank distribution of the player base in the 1v1 game mode.

Figure 2.2: Competitive Ranks in Rocket League: Ranks from left to right:
Bronze, Silver, Gold, Platinum, Diamond, Champion, Grand Champion, Su-
personic Legend. [26]

2.2.2 Cars and Hitboxes

The players interact with the game using a car. While there are over 100
cars to choose from, the underlying physics engine only makes use of 6
different hitboxes. The 6 hitboxes are: Breakout, Dominus, Hybrid, Merc,
Octane, Plank. See Fig. 2.3 for an example of a hitbox. The hitboxes differ in
shape (length, width, height), handling, boost consumption, ground height
and inclination. The exact physical properties of the hitboxes are largely
unknown, the differences have mostly only been verified through testing.

Figure 2.3: Octane with Octane Hitbox: Rocket League is played using a
car. There are 6 different hitboxes and over 100 cars to choose from. [33]

10

2.2. Rocket League

2.2.3 Frameworks

RLBot To interact with the game, we use the RLBot framework [27]. The
RLBot framework enables the creation of custom bots for Rocket League by
providing an API to connect to the game. The API uses sockets to communi-
cate game state and actions between the game and a custom bot. The action
space used by the RLBot framework consists of 8 actions, see Table 2.1, with
3 boolean actions and 5 continuous actions in the interval [−1, 1]. Note that
all actions can be used simultaneously and independently. However, some
actions have no effect in certain scenarios, e.g. using the action boost does
nothing if the car has no boost. The game state provided by the API contains
essentially all information about the current game at a given time step. This
includes the physical state of the ball and cars, information about the boost
pads, the remaining time and more. For an example game tick packet, see
A.1. This game tick packet will be provided to the bot up to 120 times per
second (the engine’s internal physics tick rate), and the bot can return an
action for each packet.

Table 2.1: Actions in RLBot: 8 different actions are available to control a bot
in Rocket League. There are 5 continuous actions in the interval [−1, 1] and
3 boolean actions. There is no dependency between the actions.

Action Domain

Throttle [−1.0, 1.0]
Steer [−1.0, 1.0]
Pitch [−1.0, 1.0]
Yaw [−1.0, 1.0]
Roll [−1.0, 1.0]
Jump {0, 1}
Boost {0, 1}
Handbrake {0, 1}

RLGym While the RLBot framework (Sec. 2.2.3) allows custom bots in
Rocket League, the RLBot frameworks lacks the ability to run the game
faster than real-time, making it impractical to train a reinforcement learning
agent. To train Seer, we use the RLGym framework [29], which allows the
game to be treated like an Openai Gym-like environment. RLGym uses
a BakkesMod plugin [4] to control the game and run Rocket League faster
than real-time. In addition, the RLGym framework allows multiple instances
of the game to be used simultaneously to increase the batch size. While
RLGym’s action space is the same as RLBot’s, RLGym’s observation space is
missing some observation, such as game information and boost pad timers.

11

Chapter 3

Methods

This chapter presents how Seer is trained. We created two versions of Seer,
one version which started learning with a random prior (random parameter
initialization) and one version which has a prior from supervised learning
from human data. This chapter describes all the details of the reinforcement
learning procedure and how Seer learned a prior from human data.

The reinforcement learning training system of Seer is shown in Fig. 3.1. In-
teraction with the game is done using a BakkesMod plugin. The BakkesMod
plugin connects to the RLGym framework, which allows Rocket League to
be treated like an OpenAI Gym environment. Seer receives observations
from the environment and return actions to advance to the next step. Ob-
servations, rewards, actions, and advantages are stored in a replay buffer
which is used by PPO to update the policy and value function.

Seer
Policy + Value

Function

PPO

Observation Action

BakkesMod

Rocket League

RLGym

Reward

AdvantageUpdate

Figure 3.1: System Overview of Seer: The RLGym framework is connected
to Rocket League via a BakkesMod plugin to communicate actions and ob-
servations with the game. The PPO implementation receives observations,
rewards, actions, and advantages to update the policy and value function of
Seer. Seer receives observations and provides actions and advantages.

12

3.1. Optimizing the Policy

3.1 Optimizing the Policy

The goal is to find a policy that maximizes the probability of winning the
game. In practice, we optimize a reward function (see Sec. 3.6). The reward
function was designed at the start of the project and kept mostly fixed, some
minor tweaks were made whenever we observed that Seer may get stuck in
a local optimum.

The policy is optimized using Proximal Policy Optimization [32] (see Sec.
2.1.7). The implementation is based on the Recurrent PPO version of stable-
baseline 3 [25], to which some improvements were made. The used software
can be found in A.3. Seer uses a single neural network to model both the
policy and the value function (see Sec. 3.4). The neural network uses a
shared LSTM layer that feeds into separate fully connected layers producing
policy and value function outputs. The Adam optimizer [18] is applied to
optimize the policy and value function using truncated backpropagation
through time [47] for 32 epochs per rollout. The rollouts are collected using
self-play (see Sec. 3.9), where 20% of the games are played against older
versions and 80% of the games are played against the current version.

Seer performs 15 actions per second and has a reaction time of 8− 75 ms (see
Sec. 3.7). For each time step, Seer receives 159 observations about the game
(see Sec. 3.2) and returns one of 1800 actions (see Sec. 3.3). Unavailable
actions are masked out to reduce the noise that Seer experiences during
training (see Sec. 3.5).

3.1.1 Episode and Rollout

A Rocket League game usually consists of several goals. Instead of selecting
the entire game as an episode, each goal itself is selected as an episode. It
would be impractical to select the entire game as an episode, as there is a
short replay and goal celebration after each goal, which would have to be
masked out or otherwise result in noise. It also allows keeping the episodes
relatively short (10s − 120s vs. 600s), which makes learning easier. As a
result of this design decision, Seer has no understanding of game time and
thus no understanding of certain tactics, such as playing for time.

An overview of how rollouts are collected is shown in Fig. 3.2. The Rocket
League physics engine runs at 120 ticks per second. Seer uses a frameskip
[16] of 8, which means that one policy time step consists of 8 physics ticks,
yielding about 66.6 ms per policy time step. One sample is created by com-
bining 16 time steps that are jointly optimized using truncated backpropa-
gation through time. A rollout then consists of 32 samples or 512 time steps,
corresponding to about 34.13 seconds of game time.

13

3.1. Optimizing the Policy

Rocket League Physics Engine: 120 fps

Physics Tick

Policy Timestep

Sample

8 physics ticks (66.6 ms) per policy time step

16 timesteps (1.06s) per sample (LSTM Unroll Length)

32 samples (34.13s) per rollout

Rollout

Figure 3.2: Timescales: The breakdown of a rollout. A rollout consists of 32
samples, which accounts for about 34.13 seconds of game time. A sample
is optimized together using truncated backpropagation through time and
consists of 16 policy time steps. A policy time step is equal to the length of
8 physics ticks of Rocket League.

3.1.2 Hyperparameters

All the hyperparameters used to train Seer are shown in Table 3.1. Almost
all hyperparameters were kept fixed during training. The ones that were
modified are the reward weight for scoring a goal (see Sec. 3.6), the time
horizon (see Sec. 3.8), the entropy coefficient (see Sec. 3.10) and the learning
rate. The initial learning rate was set to 1e-5 and was then continuously
lowered to 5e-6 during training, see Fig. 3.3. An overview of when and how
the parameters were modified is shown in Fig. A.1.

A large batch size is usually the key to success when training a reinforcement
learning agent (see [6]). With the resources available during this project, we
were able to run a maximum of 30 Rocket League instances simultaneously.
Since 20% of the games are played against older versions (see Sec. 3.9)
and each Rocket League instance produces 32 samples (512 time steps) per
rollout, a batch size of 1728 samples (27 648 time steps) was used to train
Seer.

14

3.1. Optimizing the Policy

Table 3.1: Hyperparameters: All the hyperparameters used in training Seer.
Most parameters were fixed for the whole experiment, those which were
modified during training are indicated x ↔ y.

Parameter Value

Frameskip 8
LSTM Unroll Length 16
Rollout Length 512
Batch Size (Samples) 1728
Batch Size (Timesteps) 27648
Epochs 32
Time Horizon 10s↔ 20s
GAE λ 0.95
PPO Clipping 0.2
Value Loss Weight 1.0
Entropy Coefficient 0.01↔ 0.005
Learning Rate 1e-5↔ 5e-6
Adam β1 0.9
Adam β2 0.999
Past Opponents 20%
LSTM Max Gradient Norm 0.5
Goal Scored Weight 1.25↔ 1.45

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e10

5

10

15

20

25

30

35

40

Tr
ue

Sk
ill

0.5

0.6

0.7

0.8

0.9

1.0

Le
ar

ni
ng

 R
at

e

1e 5

Trueskill
Learning Rate

Figure 3.3: Learning Rate during Training: The learning rate was initialized
to 1e-5 and continuously lowered during training to 5e-6 to help optimiza-
tion and generalization.

15

3.2. Observation Space

3.2 Observation Space

At each time step, Seer observes 159 inputs about the game, see Table 3.2.
The observation contains information about the game state, such as player
encodings, the encoding of the ball and boost pad encodings. Most of the
information in the observation is provided directly by the frameworks used
(RLBot, RLGym), others were computed ourselves e.g. norms. The observa-
tion consists mostly of float values, which are treated as such. All boolean
observations are encoded as 0.0 or 1.0, and the previous action is encoded
using a one-hot encoding. All observations are scaled to be in the range
[−1, 1] before feeding them into the neural network.

Table 3.2: Observation: Seer receives 159 observations at each time step. The
observation consists mostly of physical information about the player and the
ball, as well as information about the boost pads. (uu = unreal units)

Game 41 Per Player 54 Per Boost Pad 68

Ball Position [uu] 3 Position [uu] 3 Active [bool] 1
Ball Velocity [uu/s] 3 Velocity [uu/s] 3 Timer [s] 1
Ball Velocity L2 Norm [uu/s] 1 Velocity L2 Norm [uu/s] 1
Ball Angular Velocity [rad/s] 3 Angular Velocity [rad/s] 3
Previous Action Encoding 19 Rotation (Euler Angles) 3
Players Position diff. [uu] 3 Is Supersonic [bool] 1
Players Position diff. L2 Norm [uu] 1 Distance to Ball [uu] 3
Players Velocity diff. [uu/s] 3 Distance to Ball L2 Norm [uu] 1
Players Velocity diff. L2 Norm [uu/s] 1 Velocity to Ball [uu/s] 3

Velocity to Ball L2 Norm [uu/s] 1
Demo Timer [s] 1
Alive [bool] 1
Boost [float] 1
Wheel Contact [bool] 1
Has Flip [bool] 1

While humans play the game through a screen, Seer receives the informa-
tion necessary to play the game in a series of data arrays. It is theoretically
possible to train an agent using images as input, but impractical in practice,
since it would multiply the computational resources manyfold and make it
more difficult for the agent to access information. Using data arrays instead
of images gives Seer a small advantage, as Seer has nearly complete infor-
mation about the game at all times. For example, when playing the game as
a human, the opponent’s boost level is unknown. However, we do not be-
lieve that these discrepancies give Seer an unfair advantage, as experienced
players can accurately estimate the hidden values.

Seer takes advantages of the fact that Rocket League is played on a symmet-
ric field (see Sec. 2.2) by mirroring all observations if Seer is playing as the
orange player. Mirroring the observations if Seer is playing on the orange
team significantly reduces the variance of the training data and basically
doubles the batch size. This means that Seer will always perceive the game
as if Seer were playing as a blue player.

16

3.3. Action Space

3.3 Action Space

The action space required to play Rocket League consists of 5 continuous
actions in the interval [−1, 1] and 3 boolean actions, see Table 2.1. Continu-
ous actions are a good choice when playing the game with a controller, as
continuous actions map well to a controller’s trigger and joystick, but con-
tinuous actions are not the preferred choice when creating a neural network
to play the game. As described in [17], there are significant drawbacks to
using continuous actions for reinforcement learning in video games, such as
longer training time and lower final performance. We therefore discretized
the original action space and use a multi-discrete action space.

The action space of Seer is shown in Table 3.3. In total, Seer can perform
1800 different actions. The objective when designing the action space was
to keep the action space as small as possible without limiting Seer’s ability
to play the game. Only 3 bins are used for throttle and roll, while 5 bins
are used for pitch and yaw. Since Seer can switch between actions relatively
quickly (see Sec. 3.7), Seer can perform basically all required actions regard-
ing accelerating and rolling using only 3 bins each. As pitch and yaw are
used to determine the dodge direction, we felt that using only 3 bins might
limit the performance of Seer.1 To save one softmax activation, the same
action is used for steer and yaw.2

Table 3.3: Action Space of Seer: Instead of using continuous actions to
control the car, Seer uses a discretized action space to facilitate learning.

Action Domain

Throttle {−1, 0, 1}
Steer/Yaw {−1,−0.5, 0, 0.5, 1}
Pitch {−1,−0.5, 0, 0.5, 1}
Roll {−1, 0, 1}
Jump {0, 1}
Boost {0, 1}
Handbrake {0, 1}

Many Rocket League agents use scripted actions to perform the kickoff, as
this is one of the most important mechanics to get right when playing the
game at a high level. Seer does not use scripted actions, but Seer learned
everything itself.

1There is a huge debate in the Rocket League community whether this is true or not, as
keyboard and mouse players only have 3 bins (8 dodge directions), while controller players
have many more.

2Using the same action for steer and yaw is possible since steer can only be used on the
ground and yaw only in the air. It is also how humans control the car.

17

3.4. Neural Network Architecture

3.4 Neural Network Architecture

To take advantage of transfer learning, Seer uses an architecture in which
the value function and action policy share a network and share gradients,
see Fig. 3.4. Additionally, a Long Short-Term Memory (LSTM) [12] layer
is used to give the network the ability to remember previous events. The
combined policy and value network uses 2 015 127 parameters.

159

256

Feauture Extractor

512

LSTM512

1

Value Network
7

Policy Network

512

Observation

Value Action

Figure 3.4: Overview Joint Policy and Value Network: Seer uses a joint
policy and value network that shares layers and gradients. The input is
processed into a single vector, which is then passed to a single-layer LSTM.
The output of the LSTM is fed into separate policy and value networks.

First, the observations are pre-processed by the feature extractor into a single
vector that summarizes the state. Then, the vector is processed by a single-
layer LSTM. The output of the LSTM is then fed into the policy and value
network to predict value and action.

The feature extractor receives as input observations as described in Table 3.2.
The observation has already been augmented to always correspond to the
blue player’s view (see Sec. 3.2). The observation is first scaled to be in the
interval [−1, 1] and then fed into a simple feedforward neural network, see
Fig. 3.5a. The output of the feature extractor is then fed into a single-layer
LSTM of size 512. The LSTM additionally receives the hidden state and the
cell state of the previous time step as input in each time step. The output
of the LSTM is then fed into the policy and value network. The value net-
work is just a simple feedforward neural network, see Fig. 3.5b. The policy
network first feeds the LSTM output through a feedforward neural network
and then divides the output into different actions, having an output for each
action, see Fig. 3.5c. A softmax is then applied to each action, resulting in
a multicategorical distribution. One can then either sample from this mul-
ticategorical distribution or choose the action with the highest probability,
which results in the 7 actions needed by Seer to play Rocket League.

18

3.5. Masking

159

159

256

Scaling

Linear +
LeakyReLU

(a) Feature Extractor

512

256

128

Linear +
LeakyReLU

Linear

1

Linear +
LeakyReLU

(b) Value Network

512

Linear +
LeakyReLU

256

256

128

22

Linear

3

Softmax

5

Softmax

5

Softmax

3

Softmax

2

Softmax

2

Softmax

2

Softmax

3 5 5 3 2 2 2

Sample
/Argmax

Sample
/Argmax

Sample
/Argmax

Sample
/Argmax

Sample
/Argmax

Sample
/Argmax

Sample
/Argmax

1111 1 1 1

7

Linear +
LeakyReLU

Linear +
LeakyReLU

(c) Policy Network

Figure 3.5: Details of the Network Architecture: The feature extractor first
scales the input to be in the interval [−1, 1], and then feeds into a single fully
connected layer. The value network consists of 3 fully connected layers. The
policy network first feeds into 4 fully connected layers, afterwards the input
is split into multiple actions and for each action a softmax is applied.

3.5 Masking

As described in Section 3.3 and 3.4, Seer uses 7 discrete actions to play
Rocket League. In total, there are 22 different action values to choose from
(some actions have two, three or five possible values). However, not all
possible action values are available at all times. For example, the action boost
is only available if the car has any boost at all. Following [13], to reduce the
noise experienced during training, all unavailable actions are masked out at
each time step.

To mask out unavailable actions, the logits in the final linear layer are re-
placed with a large negative value (e.g. −1e8), see [13]. Table 3.4 shows all
the actions that are masked out at each time step. The actions pitch and roll
only have an effect if the car is in the air; therefore, all non-zero actions are
masked out if the car is on the ground. The boost action is masked out if the
car has no boost. The jump action is masked out if jumping is not available.
Seer can only use the handbrake if the car is on the ground. Finally, the
throttle action does not have an impact if the car is in the air3, therefore throt-
tle is a good candidate for masking. However, jumping and accelerating are
the only possibilities to flip the car around if the car is stuck upside down.
Since we wanted to give Seer the possibility to do so, it is not possible to

3This is actually not true, since using throttle provides small acceleration even when in
the air. But it is mostly negligible.

19

3.6. Reward Weights

mask out both actions. In the end, the jump action was masked out.

Table 3.4: Masked Actions: To reduce the noise experienced during training,
unavailable actions are masked out. Some actions are only available in the
air or on the ground, while some actions require certain conditions.

Action Domain Condition

Throttle {−1} On Ground
Pitch {−1,−0.5, 0.5, 1} In Air
Roll {−1, 1} In Air
Jump {1} Has Flip
Boost {1} Has Boost
Handbrake {1} On Ground

While the masking defined above helps Seer to learn faster, the masking
also prevents Seer of performing some of the more advanced mechanics in
Rocket League. For example, it is sometimes useful to use the handbrake
even if only one of the four wheels touches the ground to perform a wavedash.
Furthermore, masking the jump action disables the turtle mechanic and only
enabling pitch in the air disables wall dashing. Of course, it is also possible
that Seer is unable to perform some yet unknown mechanics. The objective
when deciding which action to mask was to mask as many actions as possi-
ble without limiting Seer’s ability to play the game. If masking limits Seer’s
performance by preventing Seer from performing some specific actions, it
is possible to remove the masking once Seer is appropriately skilled and let
Seer learn the missing mechanics.

3.6 Reward Weights

The ultimate goal of Seer is to win the game. To simplify the credit assign-
ment problem and speed up learning, a detailed reward function is used.
Table 3.5 shows all the rewards that Seer can earn with their associated
weights. The rewards are divided into conditional rewards, which are re-
ceived only when a certain condition is met, and continuous rewards, which
are received at each time step. At each time step, each reward is multiplied
by its associated weight to obtain the reward for the agent. Furthermore,
it is ensured that the reward is zero sum by subtracting from each agent’s
reward, the reward of the opponent agent. Finally, the reward is normalized
using a running mean and variance.

When designing the reward function, we tried to give Seer rewards for
actions that are considered to be good, weighted in such a way that Seer
should learn quickly to play the game but does not learn a suboptimal pol-

20

3.6. Reward Weights

Table 3.5: Reward Weights. At each time step, Seer receives a reward that
is a weighted sum of 16 individual rewards. Some rewards are conditional
(top part), while others are received at each time step (bottom part).

Name Weight Range

Goal Scored 1.25↔ 1.45 [0, 1.5]
Boost Difference 0.1 [0, 1]
Ball Touch 0.1 [0, 2]
Demo 0.3 [0, 1]

Distance Player Ball 0.0025 [0, 1]
Distance Ball Goal 0.0025 [0, 1]
Facing Ball 0.000625 [−1, 1]
Align Ball Goal 0.0025 [−1, 1]
Closest to Ball 0.00125 [0, 1]
Touched Last 0.00125 [0, 1]
Behind Ball 0.00125 [0, 1]
Velocity Player to Ball 0.00125 [−1, 1]
Kickoff 0.1 [−1, 1]
Velocity 0.000625 [0, 1]
Boost Amount 0.00125 [0, 1]
Forward Velocity 0.0015 [−1, 1]

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e10

5

10

15

20

25

30

35

40

Tr
ue

Sk
ill

1.25

1.30

1.35

1.40

1.45

Go
al

 S
co

re
d

W
ei

gh
t

Trueskill
Goal Scored Weight

Figure 3.6: Goal Scored Weight during Training: The weight for the reward
for scoring a goal was initialized to 1.25 and continuously increased during
training to 1.45 to ensure that Seer does indeed place the highest priority on
scoring.

21

3.6. Reward Weights

icy. Initially, we set the reward for scoring a goal and then designed all other
rewards in comparison to this reward. During training, the weight of the re-
ward for scoring a goal was gradually increased to ensure that Seer does
indeed place the highest priority on winning the game, see Fig. 3.6. Note
that there is no reward for winning the game, as the episode ends after each
goal (see Sec. 3.1.1).

3.6.1 Details

This subsection describes all the rewards from Table 3.5 in more detail.

Goal Scored This reward is given to the agent if it scores a goal. The agent
receives a reward of 1 for scoring a goal and can receive an additional reward
of up to 0.5 depending on the ball’s speed when scoring the goal. The bonus
is calculated using linear interpolation between the ball speed vball and the
maximum ball speed vballmax .

Rgoal scored = 1.0 + 0.5 ∗ ||vball ||22
vballmax

(3.1)

Boost Difference This reward is given to the agent if it collects or uses
boost. The reward height is based on the difference of the boost amount
between time step t and time step t− 1. The boost amount is scaled to be in
the range [0, 1] and also scaled by the square root. In this way, the fact that
collecting boost is more valuable if the agent does not have much boost is
taken into account.

Rboost di f f erence = f (boostt)− f (boostt−1), f (x) =
√

x
100

(3.2)

Ball Touch This reward is given to the agent if it touches the ball. The
agent gets a reward of ≈ 1.0 for touching the ball on the ground and can
get an additional reward of up to ≈ 1 depending on the ball height posballz
during the touch scaled by the ball radius rball . To make dribbling without
scoring disadvantageous, the reward is reduced if the agent touched the ball
in the immediate past.

Rball touch = λt ∗
(

posballz + rball

2 ∗ rball

)0.2836

λt =

{
max(0.1, λt−1 ∗ 0.95) touched ball

min(1.0, λt−1 + 0.013) else

(3.3)

Demo A reward of 1 is given to the agent it demolishes the opponent.

22

3.6. Reward Weights

Distance Player Ball This reward is given to the agent at every time step.
The agent receives an exponentially distributed reward between 0 and 1
depending on the distance between the the player position poscar and the
ball position posball . This reward is inspired by [19].

Rdistance player ball = exp
(
−0.5 ∗ ||poscar − posball ||22 − rball

vcarmax

)
(3.4)

Distance Ball Goal This reward is given to the agent at every time step.
The agent receives an exponentially distributed reward between 0 and 1 de-
pending on the distance between the ball position posball and the opponent’s
net posnet. This reward is inspired by [19].

Rdistance ball goal = exp
(
−0.5 ∗ ||posball − posnet||22 − c

vballmax

)
c = posnety − posbackwally + rball

(3.5)

Facing Ball This reward is given to the agent at every time step. The agent
receives 1 reward if its front car f orward points in the direction of the ball, and
−1 reward if its front points in the opposite direction, in between the reward
gets interpolated.

R f acing ball = car f orward ·
posball − poscar

||posball − poscar||22
(3.6)

Align Ball Goal This reward is given to the agent at every time step. The
agent gets a high reward if it is in the right position when attacking or
defending. When attacking, the agent gets a higher reward if it is behind
the ball and the ball is between the car and the opponent’s goal. When
defending, the agent gets a high reward if it is positioned between the ball
and its net.

Ralign ball goal = 0.5 ∗ cosine similarity(posball − poscar, poscar − posnetsel f)

+ 0.5 ∗ cosine similarity(poscar − posball , posnetopponent − poscar) (3.7)

Closest to Ball This reward is given to the agent at every time step. The
agent receives a reward of 1 if it is closest to the ball, measured by L2 dis-
tance.

23

3.6. Reward Weights

Touched Last This reward is given to the agent at every time step. The
agent receives a reward of 1 if the last touch of the ball was made by itself.
This reward should represent the concept of possession.

Behind Ball This reward is given to the agent at every time step. The agent
receives a reward of 1 if it is positioned behind the ball (between the ball and
its net).

Velocity Player to Ball This reward is given to the agent at every time
step. The agent receives a reward between −1 and 1 depending on whether
its current velocity vcar is into the direction of the ball.

Rvelocity player ball =
vcar

||vcar||22
· posball − poscar

||posball − poscar||22
(3.8)

Kickoff This reward is the same as Rvelocity player ball , but this reward is only
applied during kickoff, as long as the ball stays in the center position. It
should give strong incentive to learn a good kickoff.

Rkicko f f =

{
Rvelocity player ball posball = 0
0 else

(3.9)

Velocity This reward is given to the agent at every time step. The agent
receives a reward between 0 and 1 depending on its current velocity.

Rvelocity =
||vcar||22
vcarmax

(3.10)

Boost Amount This reward is given to the agent at every time step. The
agent receives a reward between 0 and 1, depending on how much boost it
currently has.

Rboost amount =

√
boost
100

(3.11)

Forward Velocity This reward is given to the agent at every time step. This
reward is similar to Rvelocity, but this reward does only reward velocity if
it is in the forward direction of the car and punishes backwards velocity.
This reward was added because the agent sometimes learned first to drive
backwards, which is a local optimum.

R f orward velocity = vcar f orward ·
vcar

vcarmax

(3.12)

24

3.7. Reaction Time

3.7 Reaction Time

The internal Rocket League physics engine runs at 120 ticks per second,
which means that Seer could theoretically perform up to 120 actions per sec-
ond. To use the computational resources more efficiently and possibly im-
prove the performance of Seer, a frameskip [16] is used. Seer uses a frameskip
of 8 frames, which means that Seer performs 15 actions per second and sub-
mits an action approximately every 66.6 ms. The action is then continuously
applied during the next frameskip. It is not viable to apply the action for
only one tick, since most actions must be applied continuously, e.g. steering,
boosting. The action is submitted as soon as possible, which means that the
game will receive the action performed by Seer on the next physics tick, see
Fig. 3.7.

Observationt

Actiont

Observationt+1

Actiont+1

Figure 3.7: Reaction Time: Seer uses a frameskip of 8 and submits the action
as soon as possible. This means that Seer performs 15 actions per second
and has a reaction time ranging from approximately 8− 75 ms.

To summarize, Seer performs 15 actions per second and has a reaction time
ranging from approximately 8− 75 ms, depending on when new informa-
tion becomes available during the frameskip. For comparison, the average
human reaction time is about 250 ms [14], while professional esport athletes
can achieve an improved reaction time of up to about 150 ms [15]. Seer
has a clear advantage when comparing reaction times to humans. It is diffi-
cult to compare the number of actions per second performed by Seer with
those of a human, since Rocket League is mainly played with a controller
that performs continuous actions. However, we believe that Seer has a small
advantage when comparing actions per second to humans.

3.8 Long Term Credit Assignment

Although Rocket League is a very fast-paced game that requires many ac-
tions per second to play, decision-making is still critical. Thus, agents must
carry out plans over many time steps to be successful. In training Seer, short-

25

3.9. Self-Play

term and long-term rewards are balanced by choosing the discount factor γ
[31] as follows:

γ = exp
(

log(0.5)
T ∗ A

)
(3.13)

where A = 15 is the number of actions performed per second, and T is the
time horizon (the time after which a reward is worth half).

The time horizon was initialized to T = 10 (γ ≈ 0.9954) to facilitate learning
an initial strategy. The time horizon was then continuously increased during
training up to T = 20 (γ ≈ 0.9977) to ensure that Seer performs proper long-
term planning to win the game, see Fig 3.8.

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e10

5

10

15

20

25

30

35

40

Tr
ue

Sk
ill

10

12

14

16

18

20

Ti
m

e
Ho

riz
on

Trueskill
Time Horizon

Figure 3.8: Time Horizon during Training: The time horizon was initialized
to T = 10 (γ ≈ 0.9954) to facilitate learning an initial strategy and continu-
ously increased during training to T = 20 (γ ≈ 0.9977) to ensure that Seer
performs proper long-term planning to win the game.

3.9 Self-Play

Seer is trained through a self-improvement process named self-play. This
technique has been successfully used in previous work to achieve superhu-
man performance in a variety of multiplayer games such as Backgammon
[41], Go [34, 36], Chess [35], Shogi [35], Hex [2], StarCraft 2 [43], Poker [8]
and Dota 2 [6]. In self-play training, the current best version of an agent con-
tinually plays against itself or older versions to optimize for new strategies
that can defeat these past and present opponents.

In training Seer, 80% of the games are played against the latest set of param-
eters, and 20% play against past versions of Seer. Seer plays occasionally
against past parameter versions in order to obtain more robust strategies
and avoid strategy collapse, in which the agent forgets how to play against

26

3.10. Exploration

a wide variety of opponents because it only requires a narrow set of strate-
gies to defeat its immediate past version (see [5]).

To decide against which older version to play, only agents with TrueSkill
µ > µnew − 10 (see Sec. 4.1), where µnew is the TrueSkill of the newest
agent, are considered. This prevents Seer from playing older agents with a
large a skill discrepancy. From the remaining agents, an agent is selected
by sampling, weighted by the agent’s TrueSkill. This strategy allows Seer to
play against a wide variety of past opponents of appropriate skill.

3.10 Exploration

Exploration is a well-known and well-researched problem in the context of
reinforcement learning. We encourage exploration in two different ways: by
shaping the loss and by randomizing the training environment.

As described in [32], PPO uses entropy bonus to encourage exploration and
prevent premature convergence to a suboptimal policy. In training Seer, the
entropy coefficient was initialized to 0.01 and continuously lowered to 0.005
during training, see Fig. 3.9.

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e10

5

10

15

20

25

30

35

40

Tr
ue

Sk
ill

0.005

0.006

0.007

0.008

0.009

0.010
En

tro
py

 C
oe

ffi
cie

nt

Trueskill
Entropy Coefficient

Figure 3.9: Entropy Coefficient during Training: The entropy coefficient
was initialized to 0.01 at the beginning to favor exploration and continuously
increased to 0.005 during training to favor more exploitation.

Further exploration is encouraged through randomization of the environ-
ment. The initial state is initialized according to the distribution shown in
Table 3.6. Mostly, the state is reset to an actual state from a game. Addi-
tionally, some special state setters are used that focus on an important event
in Rocket League: Kickoff Training, Wall Training, Goalkeeper Training and
Air Training.

27

3.11. Hitbox

Table 3.6: State Setters: After each episode, the game state is randomized
to encourage exploration. Mostly, the game is reset to a state from a human
replay. Furthermore, some special state setters are used that aim to train a
specific skill in Rocket League.

Name Probability

Replay 0.7
Kickoff 0.1
Goalie Practice 0.05
Wall Practice 0.05
Air Practice 0.05
Random 0.05

3.10.1 Details

This subsection explains all the state setters from Table 3.6 in more detail.

Replay The game is reset to a state that is uniformly randomly selected
from the Finetuning Dataset (see Sec. 3.12.1).

Kickoff The game is reset to one of the 5 kickoffs in Rocket League. Each
kickoff is chosen with the same probability.

Goalie Practice The game is reset to a state in which the ball is flying
towards one goal, therefore forcing one player to make a safe. This reset is
intended to promote goalkeeper training.

Wall Practice The game is reset to a state in which the ball is rolling on
the wall. This reset is intended to promote wall training.

Air Practice The game is reset to a state in which the ball is flying in the air
and the cars are positioned on the ground. This reset is intended to promote
aerial training.

Random The game is reset to a random state.

3.11 Hitbox

As described in Section 2.2.2, there are 6 different hitboxes in Rocket League,
each with different physical properties. To account for all the different hit-
boxes, it is possible to add the specific hitbox to the player encoding as input
to the neural network. However, as shown in [6], it is harder to learn a good

28

3.12. Learning a Prior from Human Data

policy if the neural network has to consider multiple play styles. Therefore,
we focused on only one hitbox, the octane hitbox. Seer is equipped with
the octane hitbox, and it is enforced that every opponent Seer encounters
during training also uses the octane hitbox. The octane hitbox was chosen
because it is the most commonly used, and therefore more replays in which
only octane hitboxes occurred could be found (see Sec. 3.12.1).

3.12 Learning a Prior from Human Data

As [6] and [3] show, developing a successful agent in an esport using re-
inforcement learning requires enormous computational resources and a lot
of time, neither of which we had. Hoping to spend less time and resources
training an agent, we used supervised learning to learn from human replays
to give the network a prior.

Observations and actions were extracted from human replays to create two
datasets (see Sec. 3.12.1): A general dataset of the best 15.81% players and a
finetuning dataset of the best 0.05% players. The WebDataset [1] library was
used to efficiently store and load the data. The Adam [18] optimizer was
used to train the network for approximately 34 million steps using a batch
size of 4 samples and an LSTM unroll length of 64. The first 30 million steps
were performed using the general dataset using a learning rate of 1e-5, while
the remaining 4 million gradient steps were performed using the finetuning
dataset with a learning rate of 1e-6. To prevent the weights from diverging
too far from zero, a weight decay of 1e-7 was used. The cross-entropy loss
was applied to each action in the policy, weighted by the inverse of the
frequency of the specific action. Furthermore, the MSE loss was applied to
the value network, the final loss to be optimized was the mean of all losses.

3.12.1 Dataset

The general dataset consists of 820 958 replays from players with minimum
rank Diamond 1 in 1v1 (see Sec. 2.2.1), that is, from the top 15.81% of players
in 1v1. The replays were downloaded from ballchasing.com. Of the origi-
nal 820 958 replays, those that contained errors, and those that contained
hitboxes other than the octane hitbox (Seer’s hitbox, see Sec. 3.11), were
removed, as this would have added noise. Furthermore, the parts of the
replay that are not part of actual gameplay (goal explosion, kickoff count-
down) were also removed to reduce noise. As Seer can play the game only
in the role of the blue player (see Sec. 3.2), each replay was mirrored to pro-
vide access to the orange player’s data, effectively duplicating the training
data. Finally, each replay was cut into multiple episodes (the environment
is reset after each goal, see Sec. 3.1.1), which resulted in 12 646 104 episodes.

29

https://ballchasing.com/

3.12. Learning a Prior from Human Data

Rocket League replays are stored in a binary format, which has to be decom-
piled and analyzed to get the input and output features needed. The carball
[9] library was used to decompile the binary replays into dataframes. The
dataframes contain one row of physics information for each frame in the
replay. The remaining features that make up an observation (see Sec. 3.2)
were calculated by ourselves.

One of the more difficult features to impute was whether the car’s wheels
are touching the ground. Eventually, a histogram-based gradient-boosting
classification tree (using scikit-learn [23]) was trained to predict whether the
car is in contact with the ground. The training data was collected manu-
ally while driving around in Rocket League. This classifier also helped to
compute some other features, e.g. has flip.

Unfortunately, Rocket League replays do not include all actions performed
by players at a given time step. Of the 8 actions (see Table 2.1) needed to play
Rocket League, only throttle, steer, handbrake, jump and boost are provided by
replays. The pitch, yaw and roll actions were not included and had to be
imputed. The carball library provided some rudimentary approximations
for the missing actions. In addition to the carball approximations, we took
advantage of the fact that all players use the same input for yaw and steer
when playing the game, and keyboard players additionally use the same
input for throttle and pitch.

Finetuning Dataset The finetuning dataset was created using the same
methods as the general dataset (see Sec. 3.12.1). However, for the finetuning
dataset, only replays of players with Supersonic Legend rank, the highest
rank in the Rocket League (see Sec. 2.2.1), which corresponds to the top
0.05% of the player base in 1v1, were used. To further increase the quality of
the training data, instead of keeping the blue and orange sides of the replay,
only the side that scores the goal, i.e., wins the current episode, was kept.
This resulted in 376 459 episodes.

30

Chapter 4

Evaluation

Evaluating the skill of an agent is no easy task. Many games are necessary to
get an approximate estimate of an agent’s abilities. Furthermore, there are
many viable strategies that vary in effectiveness depending on the opponent.
Since Psyonix does not allow bots to compete in online play, we had to
evaluate Seer ourselves.

4.1 TrueSkill

We use the TrueSkill [11] rating system to evaluate Seer. TrueSkill is a
Bayesian skill rating system which uses a Gaussian distribution N (µ, σ2)
to model the skill of a player. Whenever two players face each other, the
mean and standard deviation of the players’ skill are modified accordingly.
Our TrueSkill environment uses the parameters µ = 25, σ = µ/3, β = σ/2,
τ = σ/100 , draw probability = 0, which means that a TrueSkill difference
of approximately 8.3 corresponds to an 80% winrate.

We first created a league of reference agents (in-game bots and custom bots)
with known skills, see Table A.1. The TrueSkill of the reference agents
was calculated by playing 281 games between the different reference agents.
When calculating the TrueSkill for the reference agents, the matchup that
resulted in the largest potential variance reduction was chosen.

To evaluate a new agent, the new agent’s TrueSkill is initialized according
to the environment and µ is initialized equal to the final µ of the previous
agent. The first version of the agent was initialized with µ = 0. The new
agent then plays against the reference agents. A new agent is evaluated
until a new version is released, which in our case means playing about 20
games to evaluate the agent’s skill. As soon as a new version is released, the
old agent is added to the reference agents, which means that the new agent
is compared against all previous agents and the initial league of reference

31

4.2. Random Prior vs. Human Prior

agents. Once an agent is added to the reference agents, its TrueSkill remains
fixed and only the skill of the agent being evaluated is changed. When
evaluating new agents, the matchup with the highest probability of a draw,
is chosen.

4.2 Random Prior vs. Human Prior

Using solely supervised learning did not result in an agent that could play
Rocket League. The agent had mainly difficulty steering in the correct direc-
tion, which makes it impossible to play the game. However, the agent was
able to execute some common actions reasonably well, such as kickoffs or
dodging into the ball if the ball is directly in front of the agent.

While using supervised learning from replays did not result in an agent that
can play Rocket League, we observed faster learning of a good policy using
reinforcement learning when using a human prior than with a random prior,
see Fig. 4.1. Starting training with a human prior reaches almost immedi-
ately a TrueSkill of about 35, while starting training with a random prior
starts with TrueSkill around zero. Note, however, that if the agent starts
training with a human prior, the agent’s TrueSkill will drop off relatively
soon after launch and eventually matches the agent’s training progress if
the agent starts training with a random prior.

0 2 4 6 8
Environment Steps 1e8

5

10

15

20

25

30

Tr
ue

Sk
ill

Prior
Human
Random

Figure 4.1: TrueSkill using Different Priors: We trained two versions of
Seer, one version started learning with a random prior and one version
started learning with a human prior from human replays. The version that
started learning with a human prior shows faster learning in the early stages,
but eventually the skills of the two agents converge.

We observed that the initial policy using a human prior has a relatively

32

4.3. Evaluating Seer

low jumping probability, which allows the agent to learn quickly in early
training. However, not using the jump button represents a local optimum,
and once the agent began to increase the probability of jumping to explore,
the agent’s skill decreased. We believe that the rewards and losses we have
defined favor a certain way of learning how to play Rocket League, and
the policy is forced into that way of learning eventually. It may be possible
to choose rewards and losses such that the agent’s performance does not
decrease when using a human prior, we have not had the time and resourced
to investigate this phenomenon further.

4.3 Evaluating Seer

Fig. 4.2 shows the TrueSkill of Seer during training. The highest TrueSkill
Seer achieved is about 40, which is better than most agents in the reference
league and slightly below the best agent in the reference league. Seer is
roughly in the Platinum I rank (see Sec. 2.2) and thus in the top 50 percent
of the Rocket League player base in 1v1. Seer’s play style is mostly focused
on ground play, as Seer failed to learn to aerial or to double jump. Therefore,
Seer focuses primarily on making outplays by dribbling and by rolling the
ball on the wall. Seer also learned to perform a good kickoff, which is
essential for the 1v1 game mode. We created a YouTube playlist1 which
documents the training progress and play style of Seer.

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e10

5

10

15

20

25

30

35

40

Tr
ue

Sk
ill

Novice Player
Kamael (World Champion 2020)
Necto (World Champion 2022)
Seer

Figure 4.2: TrueSkill of Seer: Seer trained for about one and a half month
and played about 20 years of Rocket, during which Seer was constantly
evaluated. The final version of Seer is roughly in the Platinum I rank and
consistently performed better than most agents in the reference league.

1https://www.youtube.com/playlist?list=PLsg-iAOpzEaVIV5CdO9R3hbNv6wT0yFVF

33

https://www.youtube.com/playlist?list=PLsg-iAOpzEaVIV5CdO9R3hbNv6wT0yFVF

4.3. Evaluating Seer

We make no claim that Seer is the best performing Rocket League agent, as
Seer failed to learn some of the most essential mechanics of Rocket League.
However, Seer was able to achieve a high level of play without scripted
actions, which sets him apart from most other Rocket League agents, as
most agents use scripted kickoffs.

34

Chapter 5

Conclusion

In this thesis, we created Seer, a Rocket League 1v1 agent. Seer was trained
using self-play, where the policy was optimized using Proximal Policy Op-
timization (PPO). With the goal to accelerate training, we used supervised
learning to learn a prior from human replays. We showed that learning from
human replays can speed up training in the early stages, but shows dimin-
ishing returns in the later stages. The final version of Seer is roughly in the
Platinum I rank, and thus in the top 50 percent of the Rocket League player
base in 1v1.

5.1 Future Work

The key ingredient to further improve the performance of Seer is to expand
the scale of compute used, by increasing the batch size and total training
time. It is critical to make use of distributed computing using asynchronous
rollout and optimization workers to scale to larger batch sizes. It may also
be worthwhile to further explore the approach in which Seer uses a prior
from human data.

As it takes a long time to train an agent using reinforcement learning, we
make no claim that the architecture, observation space, action space, re-
wards, losses, hyperparameters etc. used to train Seer are optimal. We
believe that there is certainly room for improvement.

This thesis focused only on the 1v1 game mode in Rocket League. Although
Seer cannot play other game modes, it is possible to generalize this work to
other game modes. Seer currently posses superhuman abilities (e.g. reaction
time), a next version could be more handicapped to match human abilities.

35

Appendix A

Appendix

A.1 Game Tick Packet

1 packet: {

2 'game_cars': [

3 {

4 'physics': {

5 'location': {'x': 0.0, 'y': 0.0, 'z': 0.0},

6 'rotation': {'pitch': 0.0, 'yaw': 0.0, 'roll': 0.0},

7 'velocity': {'x': 0.0, 'y': 0.0, 'z': 0.0},

8 'angular_velocity': {'x': 0.0, 'y': 0.0, 'z': 0.0}

9 },

10 'is_demolished': False,

11 'has_wheel_contact': True,

12 'is_super_sonic': False,

13 'is_bot': True,

14 'jumped': False,

15 'double_jumped': True,

16 'name': 'Jupiter',
17 'team': 0,

18 'boost': 48.0,

19 'hitbox': {'length': 118, 'width': 84, 'height': 36},

20 'hitbox_offset': {'x': 13.88, 'y': 0.0, 'z': 20.75},

21 'score_info': {

22 'score': 340,

23 'goals': 2,

24 'own_goals': 0,

25 'assists': 1,

26 'saves': 1,

27 'shots': 3,

28 'demolitions': 1

29 }

30 },

31 { ... }

32],

33 'num_cars': 2,

34 'game_boosts': [

35 {

36 'is_active': True,

37 'timer': 0.0

38 },

39 { ... }

36

A.1. Game Tick Packet

40],

41 'num_boost': 36,

42 'game_ball': {

43 'physics': {

44 'location': {'x': 0.0, 'y': 0.0, 'z': 0.0},

45 'rotation': {'pitch': 0.0, 'yaw': 0.0, 'roll': 0.0},

46 'velocity': {'x': 0.0, 'y': 0.0, 'z': 0.0},

47 'angular_velocity': {'x': 0.0, 'y': 0.0, 'z': 0.0}

48 },

49 'latest_touch': {

50 'player_name': 'Beavis',
51 'time_seconds': 120.63,

52 'hit_location': {'x': 0.0, 'y': 0.0, 'z': 0.0},

53 'hit_normal': {'x': 0.0, 'y': 0.0, 'z': 0.0},

54 'team': 0,

55 'player_index': 0

56 },

57 'drop_shot_info': {

58 'damage_index': 0,

59 'absorbed_force': 0,

60 'force_accum_recent': 0

61 },

62 'collision_shape': {

63 'type': 1,

64 'box': {'length': 153.0, 'width': 153.0, 'height': 153.0},

65 'sphere': {'diameter': 184.0},

66 'cylinder': {'diameter': 184.0, 'height': 30.0}

67 }

68 },

69 'game_info': {

70 'seconds_elapsed': 405.12,

71 'game_time_remaining': 34.0,

72 'is_overtime': False,

73 'is_unlimited_time': False,

74 'is_round_active': True,

75 'is_kickoff_pause': False,

76 'is_match_ended': False,

77 'world_gravity_z': -650.0,

78 'game_speed': 1.0

79 },

80 'teams': [

81 {

82 'team_index': 0,

83 'score': 7

84 },

85 { ... }

86],

87 'num_teams': 2,

88 }

37

A.2. Reference League

A.2 Reference League

We used version 34 of the RLBotPack [28].

Table A.1: Reference League: TrueSkill of custom bots.

Bot TrueSkill

Necto 42.52± 3.29
Self-driving car 40.69± 2.20
Wildfire 36.44± 2.22
Diablo 35.77± 2.17
Botimus Prime 34.89± 2.24
Bubo 33.98± 2.18
Beast from the East 32.35± 2.26
ReliefBot 32.18± 2.27
Kamael 31.93± 2.22
rashBot 30.34± 2.30
AdversityBot 30.29± 2.29
PenguinBot 29.77± 2.26
Bribblebot 29.30± 2.21
Stick 28.14± 2.24
BroccoliBot 27.33± 2.24
FormularBot 1.5 27.09± 2.20
Atlas 26.97± 2.25
Leaf 25.68± 2.26
Zoomelette 25.45± 2.30
Allstar 24.29± 2.31
ABot 24.27± 2.21
DisasterBot 23.68± 2.25
Pro 22.94± 2.22
ElkBot 22.35± 2.29
Lanfear 21.79± 2.27
Air Bud 20.67± 2.32
SkyBot 20.60± 2.28
FillamentBot 20.39± 2.29
St. Peter 19.74± 2.28
Codename Cryo 18.19± 2.28
NomBot v1.0 17.30± 2.30
VirxEB 16.98± 2.26
Rookie 16.33± 2.31
RocketNoodles 11.88± 2.31

38

A.3. Software Stack

A.3 Software Stack

• Python Version: 3.8.10

• OS: Windows 10

• CUDA: 11.3

A.3.1 Forks

• rlgym: https://github.com/Walon1998/rocket-league-gym
(e1f466c1c409f934d41ae029d1f9d6eb2e877a71)

• rlgym-tools: https://github.com/Walon1998/rlgym-tools
(1f93d7f3b04be00394007c74d3a40c28ba1fe842)

• sb3-contrib: https://github.com/Walon1998/stable-baselines3-contrib/
tree/feat/ppo-lstm (314e7b71837bc2d9ead3d06d9768c6484ff76d20)

• stable-baselines3: https://github.com/Walon1998/stable-baselines3
(803b63eabf93768d542ee778a5eb85b68358b7f3)

A.3.2 Installed Packages

• carball: 0.7.5

• comet-ml: 3.26.0

• gym: 0.21.0

• matplotlib: 3.5.1

• numba: 0.55.1

• numpy: 1.21.6

• nvidia-ml-py3: 7.352.0

• pandas: 1.0.3

• pycuda: 2020.1

• rlbot: 1.63.2

• rlbot-gui: 0.0.126

• rlgym-compat: 1.0.2

• RLUtilities: 0.0.13

• scikit-learn: 1.0.1

• scipy: 1.8.0

39

https://github.com/Walon1998/rocket-league-gym
https://github.com/Walon1998/rlgym-tools
https://github.com/Walon1998/stable-baselines3-contrib/tree/feat/ppo-lstm
https://github.com/Walon1998/stable-baselines3-contrib/tree/feat/ppo-lstm
https://github.com/Walon1998/stable-baselines3

A.3. Software Stack

• seaborn: 0.11.2

• tensorrt: 8.2.3.0

• torch: 1.10.2+cu113

• torch-tensorrt: 0.0.0

• torchaudio: 0.10.2+cu113

• torchvision: 0.11.3+cu113

• torchviz: 0.0.2

• trueskill: 0.4.5

• webdataset: 0.2.4

40

A.4. Hyperparamters Change

A.4 Hyperparamters Change

10

20

30

40
Tr

ue
Sk

ill

1.3

1.4

Go
al

 S
co

re
d

W
ei

gh
t

0.6

0.8

1.0

Le
ar

ni
ng

 R
at

e

1e 5

0.006

0.008

0.010

En
tro

py
 C

oe
ffi

cie
nt

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e10

10

15

20

Ti
m

e
Ho

riz
on

Figure A.1: Hyperparameters Change during Training: This figure shows
the hyperparameters that were changed during training and how they were
adjusted.

41

A.5. Rocket League 1v1 Rank Distribution

A.5 Rocket League 1v1 Rank Distribution

Unranked
Bronze I

Bronze II
Bronze III

Silver I
Silver II

Silver III
Gold I

Gold II
Gold III

Platinum I

Platinum II

Platinum III

Diamond I

Diamond II

Diamond III

Champion I

Champion II

Champion III

Grand Champion I

Grand Champion II

Grand Champion III

Supersonic Legend
Rank

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

12
.7

7
0.

05 0.
12 0.
33 0.

81
1.

8
3.

51
6.

42
9.

71
12

.4
6

14
.3

4
12

.6
8

9.
73

6.
57

3.
92

2.
26

1.
21

0.
62

0.
32

0.
17

0.
09

0.
05

0.
05

Figure A.2: Approximate rank distribution in 1v1 in Rocket League (Season
7).

42

Bibliography

[1] Alex Aizman, Gavin Maltby, and Thomas Breuel. High performance
i/o for large scale deep learning, 2020.

[2] Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and
slow with deep learning and tree search. CoRR, abs/1705.08439, 2017.

[3] Kai Arulkumaran, Antoine Cully, and Julian Togelius. Alphastar: An
evolutionary computation perspective, 2019. cite arxiv:1902.01724.

[4] Bakkesmod. https://bakkesmod.com/index.php. Accessed:
10.05.2022.

[5] David Balduzzi, Marta Garnelo, Yoram Bachrach, Wojciech M. Czar-
necki, Julien Pérolat, Max Jaderberg, and Thore Graepel. Open-ended
learning in symmetric zero-sum games. CoRR, abs/1901.08106, 2019.

[6] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung,
Przemyslaw Debiak, Christy Dennison, David Farhi, Quirin Fischer,
Shariq Hashme, Christopher Hesse, Rafal Józefowicz, Scott Gray,
Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique Pondé
de Oliveira Pinto, Jonathan Raiman, Tim Salimans, Jeremy Schlatter,
Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang, Filip Wolski,
and Susan Zhang. Dota 2 with large scale deep reinforcement learning.
CoRR, abs/1912.06680, 2019.

[7] Ronen I. Brafman and Moshe Tennenholtz. R-max - a general polyno-
mial time algorithm for near-optimal reinforcement learning. J. Mach.
Learn. Res., 3(null):213–231, mar 2003.

[8] Noam Brown and Tuomas Sandholm. Superhuman ai for multiplayer
poker. Science, 365:eaay2400, 07 2019.

43

https://bakkesmod.com/index.php

Bibliography

[9] Carball. https://github.com/SaltieRL/carball. Accessed:
10.05.2022.

[10] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning
with a stochastic actor, 2018.

[11] Ralf Herbrich, Tom Minka, and Thore Graepel. Trueskill(tm): A
bayesian skill rating system. In Advances in Neural Information Processing
Systems 20, pages 569–576. MIT Press, January 2007.

[12] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997.

[13] Shengyi Huang and Santiago Ontañ ón. A closer look at invalid ac-
tion masking in policy gradient algorithms. The International FLAIRS
Conference Proceedings, 35, may 2022.

[14] Aditya Jain, Ramta Bansal, Avnish Kumar, and Kd Singh. A compara-
tive study of visual and auditory reaction times on the basis of gender
and physical activity levels of medical first year students. International
Journal of Applied and Basic Medical Research, 5:124 – 127, 2015.

[15] Aditya Jain, Ramta Bansal, Avnish Kumar, and Kd Singh. A compara-
tive study of visual and auditory reaction times on the basis of gender
and physical activity levels of medical first year students. International
Journal of Applied and Basic Medical Research, 5:124 – 127, 2015.

[16] Shivaram Kalyanakrishnan, Siddharth Aravindan, Vishwajeet Bag-
dawat, Varun Bhatt, Harshith Goka, Archit Gupta, Kalpesh Krishna,
and Vihari Piratla. An analysis of frame-skipping in reinforcement
learning. CoRR, abs/2102.03718, 2021.

[17] Anssi Kanervisto, Christian Scheller, and Ville Hautamäki. Action
space shaping in deep reinforcement learning. CoRR, abs/2004.00980,
2020.

[18] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization, 2014.

[19] Siqi Liu, Guy Lever, Zhe Wang, Josh Merel, S. M. Ali Eslami, Daniel
Hennes, Wojciech M. Czarnecki, Yuval Tassa, Shayegan Omidshafiei,
Abbas Abdolmaleki, Noah Y. Siegel, Leonard Hasenclever, Luke Mar-
ris, Saran Tunyasuvunakool, H. Francis Song, Markus Wulfmeier, Paul
Muller, Tuomas Haarnoja, Brendan D. Tracey, Karl Tuyls, Thore Grae-
pel, and Nicolas Heess. From motor control to team play in simulated
humanoid football, 2021.

44

https://github.com/SaltieRL/carball

Bibliography

[20] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex
Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray
Kavukcuoglu. Asynchronous methods for deep reinforcement learning.
In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings
of The 33rd International Conference on Machine Learning, volume 48 of
Proceedings of Machine Learning Research, pages 1928–1937, New York,
New York, USA, 20–22 Jun 2016. PMLR.

[21] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioan-
nis Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing atari
with deep reinforcement learning. CoRR, abs/1312.5602, 2013.

[22] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu,
Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, An-
dreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level con-
trol through deep reinforcement learning. Nature, 518(7540):529–533,
February 2015.

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[24] Marco Pleines, Konstantin Ramthun, Yannik Wegener, Hendrik Meyer,
Matthias Pallasch, Sebastian Prior, Jannik Drögemüller, Leon Bütting-
haus, Thilo Röthemeyer, Alexander Kaschwig, Oliver Chmurzynski,
Frederik Rohkrähmer, Roman Kalkreuth, Frank Zimmer, and Mike
Preuss. On the verge of solving rocket league using deep reinforcement
learning and sim-to-sim transfer, 2022.

[25] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximil-
ian Ernestus, and Noah Dormann. Stable-baselines3: Reliable reinforce-
ment learning implementations. Journal of Machine Learning Research,
22(268):1–8, 2021.

[26] What are rocket league competitive ranks? https:

//support.rocketleague.com/hc/en-us/articles/

360054049854-What-Are-Rocket-League-Competitive-Ranks-.
Accessed: 09.05.2022.

[27] Rlbot. https://rlbot.org/. Accessed: 10.05.2022.

45

https://support.rocketleague.com/hc/en-us/articles/360054049854-What-Are-Rocket-League-Competitive-Ranks-
https://support.rocketleague.com/hc/en-us/articles/360054049854-What-Are-Rocket-League-Competitive-Ranks-
https://support.rocketleague.com/hc/en-us/articles/360054049854-What-Are-Rocket-League-Competitive-Ranks-
https://rlbot.org/

Bibliography

[28] Rlbotpack. https://github.com/RLBot/RLBotPack. Accessed:
10.05.2022.

[29] Rlgym. https://rlgym.org/. Accessed: 10.05.2022.

[30] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and
Pieter Abbeel. Trust region policy optimization, 2015.

[31] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and
Pieter Abbeel. High-dimensional continuous control using generalized
advantage estimation, 2015.

[32] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. CoRR,
abs/1707.06347, 2017.

[33] Rocket Science. Rocket league hitbox visualizations (all cars)
[1.82]. https://www.youtube.com/watch?v=99j1mTN1_Vs. Accessed:
10.05.2022.

[34] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Lau-
rent Sifre, George van den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Tim-
othy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel,
and Demis Hassabis. Mastering the game of Go with deep neural net-
works and tree search. Nature, 529(7587):484–489, January 2016.

[35] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan
Kumaran, Thore Graepel, Timothy P. Lillicrap, Karen Simonyan, and
Demis Hassabis. Mastering chess and shogi by self-play with a general
reinforcement learning algorithm. CoRR, abs/1712.01815, 2017.

[36] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis
Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas
Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap,
Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and
Demis Hassabis. Mastering the game of go without human knowledge.
Nature, 550:354–, October 2017.

[37] Richard Sutton. Learning to predict by the method of temporal differ-
ences. Machine Learning, 3:9–44, 08 1988.

[38] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. The MIT Press, second edition, 2018.

46

https://github.com/RLBot/RLBotPack
https://rlgym.org/
https://www.youtube.com/watch?v=99j1mTN1_Vs

Bibliography

[39] Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Man-
sour. Policy gradient methods for reinforcement learning with function
approximation. In Proceedings of the 12th International Conference on Neu-
ral Information Processing Systems, NIPS’99, page 1057–1063, Cambridge,
MA, USA, 1999. MIT Press.

[40] R.S. Sutton, R.S.S.A.G. Barto, A.G. Barto, C.D.A.L.L.A.G. Barto, F. Bach,
and MIT Press. Reinforcement Learning: An Introduction. A Bradford
book. MIT Press, 1998.

[41] Gerald Tesauro. Td-gammon, a self-teaching backgammon program,
achieves master-level play. Neural Computation, 6(2):215–219, 1994.

[42] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement
learning with double q-learning, 2015.

[43] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Math-
ieu, Andrew Dudzik, Junyoung Chung, David H. Choi, Richard Pow-
ell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel
Kroiss, Ivo Danihelka, Aja Huang, L. Sifre, Trevor Cai, John P. Aga-
piou, Max Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond, To-
bias Pohlen, Valentin Dalibard, David Budden, Yury Sulsky, James Mol-
loy, Tom Le Paine, Caglar Gulcehre, Ziyun Wang, Tobias Pfaff, Yuhuai
Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney,
Oliver Smith, Tom Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu,
Demis Hassabis, Chris Apps, and David Silver. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. Nature, pages 1–5,
2019.

[44] Starbase arc and wasteland redesigned as stan-
dard arenas. https://www.rocketleague.com/news/

starbase-arc-wasteland-standard-arenas/. Accessed: 09.05.2022.

[45] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine
Learning, 8(3):279–292, May 1992.

[46] R. J. Williams. Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Machine Learning, 8:229–256, 1992.

[47] Ronald Williams and Jing Peng. An efficient gradient-based algorithm
for on-line training of recurrent network trajectories. Neural Computa-
tion, 2, 09 1998.

47

https://www.rocketleague.com/news/starbase-arc-wasteland-standard-arenas/
https://www.rocketleague.com/news/starbase-arc-wasteland-standard-arenas/

	Contents
	Introduction
	Related Work

	Background
	Reinforcement Learning
	Markov Decision Process (MDP)
	Policy Gradient
	Advantage Actor-Critic
	Importance Sampling
	Generalized Advantage Estimation (GAE)
	Entropy Regularization
	Proximal Policy Optimization (PPO)

	Rocket League
	Ranking System
	Cars and Hitboxes
	Frameworks

	Methods
	Optimizing the Policy
	Episode and Rollout
	Hyperparameters

	Observation Space
	Action Space
	Neural Network Architecture
	Masking
	Reward Weights
	Details

	Reaction Time
	Long Term Credit Assignment
	Self-Play
	Exploration
	Details

	Hitbox
	Learning a Prior from Human Data
	Dataset

	Evaluation
	TrueSkill
	Random Prior vs. Human Prior
	Evaluating Seer

	Conclusion
	Future Work

	Appendix
	Game Tick Packet
	Reference League
	Software Stack
	Forks
	Installed Packages

	Hyperparamters Change
	Rocket League 1v1 Rank Distribution

	Bibliography

